Rank-preserving Module Maps

نویسنده

  • BIN MENG
چکیده

In this paper, we characterize rank one preserving module maps on a Hilbert C∗−module and study its applications on free probability theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Maps Preserving Invertibility or Spectral Radius on Some $C^{*}$-algebras

Let $A$ be a unital $C^{*}$-algebra which has a faithful state. If $varphi:Arightarrow A$ is a unital linear map which is bijective and invertibility preserving or surjective and spectral radius preserving, then $varphi$ is a Jordan isomorphism. Also, we discuss other types of linear preserver maps on $A$.

متن کامل

ar X iv : m at h / 06 01 25 4 v 2 [ m at h . O A ] 2 M ar 2 00 6 Rank Preserving Maps on CSL Algebras

We give a description of a weakly continuous rank preserving map on a reflexive algebra on complex Hilbert space with commutative completely distributive subspace lattice. We show that the implementation of a rank preserving map can be described by the combination of two different types of maps. We also show that a rank preserving map can be implemented by only one type if the corresponding lat...

متن کامل

ar X iv : m at h / 06 01 25 4 v 1 [ m at h . O A ] 1 1 Ja n 20 06 Rank Preserving Maps on CSL Algebras

We give a description of a rank preserving map on a reflexive algebra on complex Hilbert space with commutative completely distributive subspace lattice. We show that the implementation of a rank preserving map can be described by the combination of two different types of maps. We also show that a rank preserving map can be implemented by only one type if the corresponding lattice is irreducibl...

متن کامل

Linear maps preserving rank 2 on the space of alternate matrices and their applications

Denote by n(F) the linear space of all n×n alternate matrices over a field F. We first characterize all linear bijective maps on n(F) (n ≥ 4) preserving rank 2 when F is any field, and thereby the characterization of all linear bijective maps on n(F) preserving the max-rank is done when F is any field except for {0,1}. Furthermore, the linear preservers of the determinant (resp., adjoint) on n(...

متن کامل

On strongly Jordan zero-product preserving maps

In this paper, we give a characterization of strongly Jordan zero-product preserving maps on normed algebras as a generalization of  Jordan zero-product preserving maps. In this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly Jordan zero-product preserving maps are completely different. Also, we prove that the direct p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007